



Jacques Jumeau

Technologie des composants utilisés dans le chauffage.

Chapitre 31

Tableau de comparaison des matières usuelles utilisées par les mouleurs de boitiers plastique

Un choix technique: les matériaux

Les boîtiers classiques, uniquement composés de 5 faces et d'un couvercle, demandent un aménagement long et coûteux, et faisant la plupart du temps l'impasse sur les nécessités de l'application : sécurité, résistance au feu, à la pénétration d'eau, aux chocs, aux UV, à la température, etc....

Sauf de rares exceptions ces boîtiers universels utilisent des matières peu coûteuses, des épaisseurs de parois faibles, et sont plus conçus en fonction du prix de vente qu'en fonction de l'application technique du client.

Nos boitiers des séries Y6, Y7, Y8 ont résolument tourné le dos à ce concept: ils offrent le maximum de possibilités, le minimum de temps d'aménagement, et des caractéristiques techniques inégalées.

<u>Un choix technique:</u> Des caractéristiques exceptionnelles de résistance environnementales et électriques de l'enveloppe

Résistance aux pénétrations: >IP65 (IEC, EN60529). Résistent à une immersion de 24 heures sous 150 mm d'eau, ce qui correspond à une classe IP67. La limitation à IP65 est uniquement due aux traversées de paroi et leur serrage correct par les utilisateurs.

Résistance aux impacts (résilience): IK10 (IEC, EN50102). Classe la plus haute de la norme.

Résistance aux vibrations: Equipés avec bornier Ultimheat et un régulateur de température, les boîtiers résistent sans dégât ni desserrage de vis à une séquence vibratoire répétitive de 48 heures de cycles de 10 minutes de séquence vibratoire sinusoïdale variable couvrant la gamme de 1.7 Hz à 5 Hz avec des accélérations variables de 0.3 à 2.6 G.

Résistance au brouillard salin: EN 600832-2-11 essai Ka (4 semaines avec concentration saline de 5%).

Résistance à la corrosion par le chlore: ASTM G48, tests A : corrosion accélérée de 96h à 70°C, solution concentrée d'hypochlorite de soude à 5.25%. Test B: corrosion 1000 heures à 60°C dans une solution diluée d'hypochlorite de soude à 200mg/l.

Résistance aux UV: (IS04892-1), longueur d'onde 315~400nm, température de corps noir 55°C, 1000 heures: pas de décoloration notable sur les boitiers et un léger jaunissement sur les couvercles en polycarbonate, perte de résistance mécanique sur éprouvette Izod entaillée inférieure à 15%. Conforme à la norme UL 746C pour la résistance aux UV, exposition à la pluie et à l'immersion.

Résistance au feu: le corps du boîtier est UL94VO et/ou UL94 5VA selon épaisseur.

Tenue en température: Température de déformation sous charge (RTI) supérieure à 125°C.

Rohs: les matières utilisées dans les boitiers sont conformes à la directive Européenne 20220/95/CE.

Reach: les matières utilisées dans les boitiers sont conformes aux directives Européennes REACH.

Joints de couvercle et de hublot: mousse de silicone, haute résistance à la température, grande souplesse, grande élasticité, pas de dégradation dans le temps.

Inserts filetés: La fermeture des couvercles et hublots utilise des inserts métalliques et non des filetages plastiques ce qui permet de nombreuses utilisations sans dégradation des filets.

Un choix technique: la matière de ces boîtiers

Contrairement à la plupart des constructeurs de coffrets et boîtiers, la matière utilisée n'a pas été choisie à cause de son prix ou de sa facilité de moulage, mais pour répondre aux impératifs techniques de ses applications en électrothermie.

Tableau de comparaison des matières usuelles utilisées par les mouleurs de boitiers plastique.

Matière	Température de déformation sous charge (ISO 75, méthode A, 1.8Mpa)	Résistance à l'impact sur plaque épaisseur 3 mm, à 25°C (EN50102)	Perte de résistance Après essais UV 1000h (ISO4892- 1)*	Résistance au feu (UL94)	Résistance mécanique à la rupture) ISO 527 / ASTMD638	GWFI Test au fil incandescent (IEC 60695-2- 12)	Autres caractéristiques	Utilisation dans les boitiers Y
ABS (UV résistant)	92°C	9.4 (IK08)	Mauvaise: Perd 80% de sa résistance mécanique après 1000H	UL94- HB	50 Mpa	650°C	Le moins cher, bon état de surface	Utilisé sur boîtiers début de gamme (Y0) sans contrainte particulière
PS (High impact, UV resistant, flame retardant)	75°C	9.8 (IK08)	Moyen : Perd 25% de sa résistance mécanique après 1000H	UL94-HB	23 à 32 Mpa	750 à 960°C	Bon fini de surface, pas cher.	La plus faible résistance mécanique et la plus faible tenue en température Non utilisé sur la gamme Y
PC (Transparent)	135°C	21.2 (IK10)	Moyen: Perd 11% de sa résistance mécanique après 1000H	UL94-5V	70 Mpa	850	Mauvaise résistance aux huiles. Ne supporte pas les vis auto- taraudeuses	Couvercles transparents, car il offre une bonne résistance aux chocs sur toute sa plage de température, et la meilleure transmission de lumière (85 à 90%)
PC-ABS	80°C	11.6 (IK09)	Bon: Perd 18% de sa résistance mécanique après 1000 heures	UL94-VO	60 MPA	960	Le meilleur état de surface	Bonne résistance mécanique, bon fini, utilisé sur les boitiers de thermostat d'ambiance domestiques série Y1
PC- ABS+20%FG	120°C	9.1 (IK08)	Bon: Perd 15% de sa résistance mécanique après 1000 heures	UL94-VO	77 MPA	960	Peu de déformations au moulage	Le meilleur état de surface, allié à une très forte résistance mécanique: Boitiers de thermostat d'ambiance professionnels
PA66	100°C	2.9 (IK06)	Moyen: Perd 22% de sa résistance mécanique après 1000H	U94-VO	80-85 Mpa	650 à 750	Résistance mécanique insuffisante, et déformations au moulage	Non utilisé sur la série Y, sauf pour certaines manettes
PA66, 20%FG corps et coffret de bornier	250°C (Utilisation permanente à 120°C)	IK10 (classe maximale)	Excellent: Perd 7% de sa résistance mécanique après 1000 heures	UL94 –VO et UL94-5V (la gamme la plus sévère)	150 Mpa	850	La deuxième matière la plus chère du tableau	Le meilleur compromise résistance aux chocs, tenue en température et résistance au feu. Utilisé sur corps des coffrets et borniers Y7, 8, 9

Note sur les classes IK: pour être classée IK, une matière doit supporter un choc supérieur ou égal aux valeurs suivantes: IK06= 1 joule, IK07=2 Joules, IK08=5 Joules, IK09=10 Joules, IK10=20 Joules.

Donc un coffret IK10 est en moyenne 2 fois plus résistant qu'un IK09, 4 fois plus

qu'un IK08, 10 fois plus qu'un IK07 et 20 fois plus qu'un IK06.

^{*} La résistance aux UV est améliorée par l'adjonction de pigment noir (noir de carbone), et c'est la raison principale de la coloration noire des coffrets de la gamme Y destines à des usages en extérieur.